Mexanikani o`rganishda fizikaning saqlanish qonunlari deb ataluvchi eng muhim qonunlarini o`rganamiz. Bular energiyaning saqlanish qonuni, impulsning saqlanish qonuni. Ilgarilanma mexanikaviy harakat ikki o`lchovga: mϑ impuls va energiyaga ega ekanligi to`g`risidagi faktlar Dekart bilan Leybnislar orasida, bu kattaliklardan qaysi biri harakat o`lchovi hisoblanishi to`g`risidagi tarixiy tortishuvga olib keldi. Energiyaning saqlanish va bir turdan ikkinchi turga aylanish qonuni ochilmaguncha bu tortishuv hal bo`lmas edi. Mexanikaviy energiyaning boshqa turdagi energiyaga aylanish qonuni analiz qilingandan so`ng, bu tortishuvni F.Engels o`zining “Tabiat dialektikasi” nomli kitobida yorqin yozgan edi.
“Shunday qilib, -deb yozgan edi F.Engels, -haqiqatdan ham mexanikaviy harakat ikki xil o`lchamga ega ekanligini ko`rdik… Agar mavjud mexanikaviy harakat shunday ko`chirilsa-ki, bunda u mexanikaviy harakat sifatida saqlansa, u holda bu harakat massani tezlikka ko`paytmasi formulasiga muvofiq uzatiladi. Agar bu harakat shunday uzatilsa-ki, bunda u potensial energiya, issiqlik, elektr va hokazolar shaklida qayta namoyon bo`lib, mexanik harakat sifatida yo`qolsa yoki bir so`z bilan aytganda, bu harakat qandaydir boshqa formadagi harakat miqdori dastlabki harakatlanayotgan massa va tezlik kvadratiga ko`paytmasiga proporsional. Umuman aytganda, -mexanikaviy harakatning o`zi bilan o`lchanadigan mexanikaviy harakatdir; ma’lum miqdordagi boshqa harakat formasiga aylanish xususiyati bilan o`lchanadigan mexanikaviy harakatdir.
Aylanma harakat uchun mexanikaviy harakat o`lchovi, mexanikaviy harakatning o`zi bilan o`lchanadigan jismning impuls momenti hisoblanadi.
Mexanikada impuls, impuls momenti va energiyadan tashqari saqlanuvchi kattalik jismning massasidir.
Ma’lumki, massa-jismning inertlik o`lchovidir. Boshqa saqlanish qonunlari bilan keyinroq tanishamiz.
Saqlanish qonunlari tabiatning eng umumiy qonunlariga taalluqli. Suyuqlik va gazlar uchungina haqiqiy bo`lgan Paskal qonunidan, qo`llanilish sohasi chegaralangan Om qonunidan va boshqa shunga o`xshash qonunlardan tashqari energiya, impuls va impuls momentining saqlanish qonunlari hozirgi kunda ma’lum bo`lgan barcha fizikaviy protsesslarda bajariladi.
Energiya impuls va impuls momentining saqlanish qonunlarini dinamika qonunlarining davomi sifatida hosil qildik. Biroq, bu qonunlar Nyuton dinamikasi qonunlarini qo`llab bo`lmaydigan vaqtda ham bajariladi.
Masalan, yorug`lik tezligiga yaqin tezlik bilan harakatlanganda Nyuton qonunlari buziladi. Biroq bu holda ham saqlanish qonuni bajariladi. Nyuton qonunlarini atom ichidagi zarralar harakatini bayon qilish uchun ham qo`llab bo`lmaydi, biroq saqlanish qonuni atom ichidagi protsesslarda ham to`griligicha qoladi.
Fizikaning asosiy kursida dinamika qonunlarini o`rganishda o`zgarmas kuch ta’siri ostida bo`lgan m massali jismning harakat qonunini topishni o`rgandindingiz. Jismga kattaligi va yo`nalishi vaqt o`tishi bilan o`zgaruvchi kuch ta’sir etgan holda mexanikaning to`g`ri masalalarini taqribiy yechish usullaridan biri bilan siz ushbu kitobdagi 18-§ da va 5-laboratoriya ishini bajarishda tanishgansiz. Endi uchinchi mumkin bo`lgan holni-o`zgaruvchan massali jismning harakatini qarab chiqamiz. Masalan, raketaning harakat tezligini va koordinatasini aniqlashda xuddi shunday masalani yechishda to`g`ri keladi. O`zgaruvchan massali jismlarning harakati to`g`risidagi masalani implsning saqlanish qonunini qo`llash asosida yechish mumkin ekan.
O`zgaruvchan massali jismlar harakatining qonunini birinchi marta Peterburg universitetining professori I.V.Mishcherskiy va taniqli rus olimi K.E.Sialkovskiylar tekshirganlar.
O’zgaruvchan jism harakati. 1897-yilda I.V.Mishcherskiyning “O`zgaruvchan massali nuqtaning dinamikasi” nomli monografiyasi chop etildi. Bunda o`zgaruvchan massali jismlar harakatining asosiy tenglamasi keltirib chiqarilgan.
O`zgaruvchan massali jism harakati qonunining soddalashtirilgan natijasini quyidagicha keltirish mumkin. Faraz qilaylik, Yerdan va boshqa osmon jismlaridan yetarlicha uzoqlikda massasi yonilg`isi bilan birga bo`lgan raketa turgan bo`lsin. Agar barcha osmon jismlarining raketaga ta’siri hisobga olinmasa, u holda “raketa-yonilg`i” jismlar sistemasi berk hisoblanadi.

Categorized in: